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Dynamics of lattice spins as a model of arrhythmia

S. Khlebnikov
Department of Physics, Purdue University, West Lafayette, Indiana 47907

~Received 30 April 1999!

We consider evolution of initial disturbances in spatially extended systems with autonomous rhythmic
activity, such as the heart. We consider the case when the activity is stable with respect to very smooth
~changing little across the medium! disturbances and construct lattice models for description of not-so-smooth
disturbances, in particular, topological defects; these models are modifications of the diffusiveXY model. We
find that when the activity on each lattice site is very rigid in maintaining its form, the topological defects—
vortices or spirals—nucleate a transition to a disordered, turbulent state.@S1063-651X~99!03312-7#

PACS number~s!: 87.19.Nn, 64.60.Cn
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I. INTRODUCTION

Physical mechanisms underlying many cardiac arrhy
mias, in particular the transition from ventricular tachycard
to ventricular fibrillation~VF!, are not fully understood. The
ventricular tissue is known, both experimentally and the
retically, to support long-living spiral excitations, and it
thought that a breakup of such a spiral could give rise t
turbulent, chaotic activity commonly associated with V
~Spirals are reviewed in books@1#.! A considerable effort is
now being directed towards understanding of these def
mediated transitions to turbulence within mathematical m
els of ventricular tissue. The currently popular approach~re-
viewed in Ref.@2#! considers a spiral in a patch~or slab! of
ventricular tissue; the patch is taken in isolation from a
pacemaking source. One then follows numerically the ti
evolution of that initial spiral.

In the real beating heart, however, the ventricles are
isolated from other regions, and the heart, viewed as a wh
supports a~more or less! periodic autonomous activity—th
heartbeat itself. In this case, any defect should be prop
viewed as a disturbance of the normal heartbeat, rather
a structure in isolated tissue. In this paper we present s
general results on the evolution of initial disturbances in
tonomously active media and discuss their possible app
tions to cardiac arrhythmias. In particular, we identify
simple mechanism of defect-induced transition to turbule
in discrete~lattice! systems. We also find that the more rig
is the system in maintaining locally the undisturbed form
activity, the more easily the transition to turbulence occu
This observation can potentially identify a useful therapeu
target.

The assumed lattice structure need not~though it may! be
related to the mechanical structure of the medium. The
of the lattice spacing in our models simply represents
smallest spatial scale on which the rhythmic activity can
desynchronized: a region smaller than that scale will nec
sarily fire as one. Discrete models of fibrillation have a lo
history, cf. the 1964 model of Moeet al. @3#. ~Unlike these
authors, though, we do not introduce any frozen inhomo
neity in the parameters of the medium, apart from the lat
structure itself.! In addition, the importance of a discre
~granular! structure of the medium has been emphasized
theoretical studies ofdefibrillation @4#.
PRE 601063-651X/99/60~6!/7262~8!/$15.00
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We introduce an interaction of an excitable region~like
the ventricles! with a pacemaking region using the followin
simplified ~not anatomical! model. We consider a three
dimensional~3D! slab of simulated medium whose extent
thez direction is limited by the planesz50 andz5Lz . The
properties of the medium change in thez direction: the re-
gion nearz50 is spontaneously oscillatory and represe
the pacemaking region; the region at largerz is merely ex-
citable and represents the ventricular tissue. Thez direction
will be also called longitudinal, and the other two direction
x and y, will be called transverse. The medium supports
spontaneous rhythmic activity, in which an infinite train
pulses propagates from small to largez. This steady activity
is independent ofx and y and is supposed to model th
heart’s normal rhythm, in which pulses propagate from
inner surface of the ventricles out.

The goal of our study was to see what happens if at so
instant the spontaneous rhythmic activity is disturbed in
spatially nonuniform fashion, and then the system is left
itself. We approach this question in two steps. First, we c
sider the case when the initial disturbance is very smooth,
almost uniform across the medium; in particular, it captu
no topological defects. In this case, we expect thatlocally the
activity rapidly relaxes close to its undisturbed form. T
state can then be described using a single fieldt(x,y,z;t),
which measures the space- and time-dependent delay~or ad-
vance! in activity among the local regions. This field is
phase variable: it is defined modulo the periodT of the
steady rhythm. For these smooth perturbations, we ex
that the dynamics oft at large times will be universal: it will
be described by an equation whose form~although not the
precise values of the coefficients! does not depend on th
details of electrophysiology or on the microstructure of t
medium. In particular, this large-time dynamics does n
‘‘see’’ the granular structure of the medium. The form of th
equation depends on the symmetries of the medium at la
scales and can be obtained by keeping terms of the low
order in space and time derivatives consistent with the s
metries. For simplicity, we will assume that at large sca
the properties of the medium are invariant under translati
and rotations in thex-y plane and thatt does not depend on
z, i.e. the disturbance is effectively two-dimensional~2D!.
~Recall thatz is the direction of propagation of the norm
7262 © 1999 The American Physical Society
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rhythm.! In this case, the equation describing the large-ti
dynamics has the form

] tu5a¹2
2u1c~¹2u!2, ~1!

where the phaseu(x,y;t) is related tot via

u~x,y;t !52pt~x,y;t !/T, ~2!

and a and c are coefficients;¹2 is the 2D gradient:¹2
5(]x ,]y).

We define a smooth disturbance by the condition

u¹2uu!2p/L, ~3!

whereL5max$Lx ,Ly% is the transverse size of the medium
Under this condition, the second term on the right-hand s
of ~1! is much smaller than the first. We keep it nonethele
because it is the leading term that breaks theu
→2u symmetry. As we will see, terms breaking this sym
metry play an important role in evolution of non-smoo
disturbances, such as topological defects. So, it is essent
establish that the coefficientc is indeed nonzero. For smoot
disturbances, though, the second term is unimportant,
Eq. ~1! shows that whena.0 a smooth initial disturbance
relaxes back to the uniform steady rhythm (u5const). The
relaxation process is ordinary diffusion.

The initial disturbanceu(x,y;t50) can be viewed as a
result of a spatially dependent resetting of the phase of
periodic activity by some external influence. Phase reset
by external stimuli is well-known for various other period
processes in excitable media, such as a reentrant wave
ring @5–7# or spiral and target waves in a 2D patch@8#. We
also note that our assumption of the 2D nature of the dis
bance is restrictive but not entirely unphysical. First, for
smooth disturbance, thez dependence will diffuse away ea
lier than the transverse dependence wheneverLz!L, so at
large times the disturbance will become two-dimension
Second, vortices in two dimensions may represent, at l
qualitatively, those vortex filaments in three dimensio
whose axes are more or less orthogonal to thex-y plane. On
the other hand, filaments lying parallel to thex-y plane are
missed by the assumption that the disturbance is t
dimensional. These may be important, and we expect t
can be handled by a generalization of the present theory

It is important to provide a derivation of~1! from an elec-
trophysiological model. In particular, that would supply ce
tain values for the yet unknown coefficientsa andc. In Sec.
II we show howu ~or t) can be defined within such a mode
The smaller are gradients ofu, the slower it evolves. One
might think that, given an electrophysiological model,
should be easy to separate away the slow dynamics and
tain, quite generally, a closed equation foru. This task, how-
ever, turns out to be far from straightforward, and as of t
writing we have not been able to obtain a general deriva
of ~1!; in Sec. II we illustrate the nature of the difficulty.

To establish that the coefficientc is indeed nonzero, we
then have resorted to the following argument. The sim
electrophysiological model that we consider can be driv
by a choice of the parameters, to a critical~bifurcation! point,
at which the autonomous rhythmic activity is extinguishe
Near the critical point, the system can be described b
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complex Ginzburg-Landau~CGL! model of a complex order
parameter whose phase is our time-delay fieldu. For a
smooth, almost uniform, perturbation, the CGL descripti
reduces to an equation foru alone, and that has the precis
form ~1!, with definite values ofa and c. In particular, we
find thata.0 andcÞ0. As we move away from the critica
point and towards the form of activity representative of t
normal heartbeat, the CGL description ceases to be va
But as it is difficult to imagine howc would now suddenly
become identically zero, we assume that the large-time
namics ofu is still described by~1! with a nonzeroc. We
also assume thata.0, so that the uniform state is stable. Th
electrophysiological model that we use is reviewed in S
III, and the CGL description is derived in Sec. IV.

The second step of our program is promoting the ab
description of smooth perturbations to a description inclu
ing not-so-smooth perturbations, in particular, topologi
defects. The latter description will not be universal. The la
of universality means~by definition! that the description, and
the type of the resulting dynamics, depend on the microstr
ture of the medium. Because no activity can be fine-grain
indefinitely, it is natural to assume a granular, or lattic
structure. In Sec. V, we construct lattice models and stu
their dynamics. In Sec. VI we summarize our results.

II. DESCRIPTION OF SMOOTH DISTURBANCES

In this section we want to show how the slow variableu,
or equivalentlyt, can be defined within the context of a
electrophysiological model. This variable evolves arbitrar
slow in the limit of arbitrarily small gradients; it should no
be confused with ‘‘slow’’ recovery variables of electrophys
ology. Our definition oft works for any medium supporting
an autonomous periodic activity that is stable with respec
smooth, almost uniform, perturbations. For definiteness,
consider here an electrophysiological equation of the for

eg̈2¹2ġ2b¹2g2F~g,ġ;z!50. ~4!

Overhead dots denote time derivatives,¹ is the 3D gradient,
ande andb are parameters. The change in properties of
medium in thez direction is described by the functionF,
which explicitly depends onz. Eq. ~4! obtains, for instance
when a medium described by the two-variable FitzHug
Nagumo~FHN! model@9# is placed in an external static elec
tric field ~we will show that below!. In that case,g is the
deviation of the recovery variable of the FHN model fro
the static solution.

We consider cases when Eq.~4! ~or, more precisely, a
suitable boundary problem based on it! has a periodic in time
solution of the form

g~r ,t !5f~z,t !. ~5!

For example, this solution may describe a train of puls
propagating in thez direction. The periodicity means tha
f(z,t1T)5f(z,t) for some periodT. Notice that, because
of the translational invariance of~4! in time, f(z,t2t) is
also a solution of~4!, for any realt ~albeit with different
initial conditions!. We now consider a smooth~in space!
perturbation of the periodic activity described by~5! and
assume that a sufficiently smooth perturbation relaxes b
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to the periodic state. After the relaxation has been under
for a while, we expect that deviations ofg from f are al-
ready small—except perhaps in the softest mode, assoc
with the time translation. We thus seek a solution to Eq.~4!
of the form

g~r ,t !5f„z,t2t~r ,t !…1x~r ,t !, ~6!

wheret(r ,t) is a slowly changing~on the scale of the period
T) function of time: ṫ!t/T. In the limit ṫ→0, we should
return to the solution~5! merely shifted in time, so in this
limit x should vanish. Thus, whenṫ is small,x is also small,
although not necessarily slowly changing. Because of
periodicity of f in time, t(r ,t) is a phase variable: at eac
spatial point, it is defined modulo the periodT. The condition
that the perturbation be smooth reduces this ambiguity
common shift byT in the entire space.

Note that separation of a perturbation intot andx is not
completely defined by~6!: a time-dependent variation int
can be absorbed by a variation inx. This ambiguity can be
fixed by an additional condition—for instance, by requirin
that x is orthogonal toḟ with respect to a certain inne
product. Eq.~6! together with the additional condition wil
then provide a complete definition of the slow variablet.

Now, let us illustrate the nature of the difficulty that aris
when one tries to derive a closed equation fort from Eq.~4!.
We substitute~6! into ~4! and expand the right-hand side
the leading order in small quantities—the functionx and the
derivatives oft. The dependence onx will be contained in
an expression of the formM̂ (f)x, whereM̂ is a linear op-
erator, which acts onx and depends onf(z,t2t(r ,t)). Be-
cause of the translational invariance of~4! in time, the op-
eratorM̂ (f) almost annihilatesḟ„z,t2t(r ,t)…:

M̂ ~f!ḟ'0; ~7!

the approximate equality means an equality up to terms
order of the small quantity] tt. If the operatorM̂ (f) were
Hermitean with respect to an inner product of the form

^x1 ,x2&5E
0

Lz
dzE

0

T

dt w~z,t !x1~z,t !x2~z,t !, ~8!

for some fixed weightw(z,t), then taking the inner produc
of ~4! with ḟ would, to the leading order, project awayx and
produce a closed equation fort. In the case of eq.~4!, how-
ever, the explicit form of the operatorM̂ is

M̂ ~f!x5S e] t
22¹2] t2b¹22

]F

]f
2

]F

]ḟ
] tD x, ~9!

whereF is F(f,ḟ;z). This operator is clearly not Hermitea
with respect to~8! with w51, and indeed we have not foun
any weight that would render it Hermitian. Thus, we we
unable to directly separate the slow dynamics oft from the
fast dynamics ofx. While it seems intuitively clear that th
slow dynamics will be described by an equation of the fo
~1!, to establish that the coefficientsa andc are indeed both
nonzero, we had to resort to an indirect method, which
describe below.
y

ted

e
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III. A MODEL OF THE HEARTBEAT

In this section, we describe in some detail the pacemak
mechanism with which we model the heartbeat. This sim
model, based on the two-variable FitzHugh-Nagumo~FHN!
kinetics, will be sufficient for our argument justifying~1!
with nonzeroa andc.

Consider a slab of medium described by a FitzHug
Nagumo model,

e
]E

]t
5¹2E1 f ~E!2G, ~10!

]G

]t
5E2bG, ~11!

placed in a static uniform external electric field, such as
field of a parallel capacitor. HereE is the transmembrane
voltage,G is the recovery variable,e.0 andb.0 are pa-
rameters, and¹ is the 3D gradient. The direction of th
external field is our longitudinal, orz, direction, and the slab
extends in that direction fromz50 to z5Lz . The boundary
conditions corresponding to this arrangement are

]E/]z~0!5]E/]z~Lz!52F, ~12!

whereF is a positive constant—the magnitude of the ext
nal field.

The boundary problem~10!–~12! has a static solution
E0(z), G0(z). Deviations from the static solution ar
e(r ,t)5E(r ,t)2E0(z) andg(r ,t)5G(r ,t)2G0(z). Exclud-
ing the variablee with the help of~11!, we obtain an equa-
tion of the form~4! with

F~g,ġ;z!5 f ~E01bg1ġ!2 f ~E0!2g2ebġ. ~13!

The explicit dependence ofF on z appears through thez
dependence ofE0.

For a range ofF the static solution to~10!–~12! is un-
stable, for various choices off (E), with respect to arbitrarily
small fluctuations ofE andG, and the instability gives rise to
an unending time-dependent activity@10#. This will be our
pacemaking mechanism. The corresponding linear stab
analysis introduces a number of useful definitions, so
briefly go over it here.

Expanding Eqs.~10!–~11! to the first order ine andg, we
obtain

S ]e/]t

]g/]t D 5S 1

e S ¹2
21

]2

]z2
1 f 8@E0~z!# D 2

1

e

1 2b
D S e

gD .

~14!

This equation should be supplemented by the boundary c
ditions

]e

]z
~0!5

]e

]z
~Lz!50. ~15!

Consider eigenfunctionscn(z), n>0, of thez-dependent op-
erator in~14!,
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S 2
]2

]z2
2 f 8@E0~z!# D cn~z!5lncn~z!, ~16!

with the boundary conditions

]cn

]z
~0!5

]cn

]z
~Lz!50. ~17!

We assume that the eigenfunctionscn are real and form a
complete orthonormal system onL2@0,Lz#.

The fieldse and g can be expanded in the complete o
thonormal system$cn%:

e~r ,t !5 (
n50

`

un~r2 ,t !cn~z!, ~18!

g~r ,t !5 (
n50

`

vn~r2 ,t !cn~z!; ~19!

here r2 is the two-dimensional coordinate:r25(x,y). Eq.
~14! then reduces to the following second-order in time l
ear equation

v̈n1S b1
ln2¹2

2

e D v̇n1
1

e
~11b@ln2¹2

2# !vn50. ~20!

Eq. ~20! describes a collection of independent oscillato
one for each value of the integern>0 and of the 2D wave
numberk. These oscillators have frequencies squared eq
to vn

21bk2/e and friction coefficients equal togn1k2/e,
where

vn
25~11bln!/e, ~21!

gn5b1ln /e. ~22!

Assuming that the boundary conditions in thex–y plane al-
low for the k50 mode, we conclude that the necessary a
sufficient condition for instability is that

ln,max$2eb,21/b% ~23!

for at least one of the eigenvaluesln . This condition corre-
sponds to there being a negativevn

2 or a negativegn , or
both.

The parametere sets the ratio of time scales character
ing changes in the voltageE and in the recovery variableG
and is typically small. Whene,1/b2, the condition~23! be-
comes

ln,2eb, ~24!

or equivalentlygn,0, wheregn is the friction ~22!.
The question that we now address is whether the co

tion ~24! is ever satisfied for physiologically relevant valu
of the parameters. We choosee50.06, b50.7, and f (E)
56.75E(E20.25)(12E), as recommended in Ref.@6# for
ventricular tissue with ‘‘normal’’ Na and K conductance
The only other parameter~besidesF) that we need to choos
is Lz , the thickness of the slab in thez direction. This rep-
resents the thickness of the ventricles in our simplifi
-

,

al

d

-

i-

d

model. We have done numerical simulations withLz53.2.
For lengths, Ref.@6# recommends scaling by a factor of 0
cm. A somewhat smaller scaling factor of 0.2 cm is obtain
if we equate the characteristic~‘‘Debye’’ ! lengthj50.57, at
which a weak static field gets screened inside the medium
a realistic value of 1 mm. With either scaling, though,Lz

53.2 corresponds to a physical length of order 1 cm.
Away from the boundaries, the static solution approac

the usual excitable fixed pointE* 5G* 50, which for the
above values of the parameters is stable with respect to s
perturbations. An unstable mode~if any! is thus localized
near one of the boundaries, specifically, for positiveF, near
z50. So, when the instability is actually present, the pa
making region is a region nearz50, in agreement with our
earlier definitions.

To find out if the instability occurs for a given value ofF,
one can numerically solve the boundary problem~16!–~17!
and check the condition~23!. Alternatively, one can numeri
cally integrate the time-dependent problem~10!–~12! with
initial conditions corresponding to small fluctuations near
static solution. This second approach also allows one to
the form of the time-dependent attractor emerging as the
stability is cutoff by nonlinear effects, so we have adopted
For the purposes of this section, it is sufficient to consid
initial fluctuations that are independent ofx and y. Using
numerical integrations of~10!–~12! with such initial condi-
tions and with the above values of the parameters, we h
found that the static solution is stable as long asF<F1

'0.4. The valueF1 is the lower critical value, at which the
static solution first becomes unstable asF is increased. The
instability persists as long asF1,F,F2 but disappears
whenF reaches the upper critical valueF2'1.

The form of the time-dependent attractor, which develo
from small initial fluctuations near the static solution,
qualitatively different for values ofF that are close to the
upper critical field as compared to those elsewhere in
instability window. These two different forms correspond
propagating versus nonpropagating activity@10#. In the range
F1,F,Fp , where Fp is somewhat smaller thanF2, the
attractor is an unending train of pulses propagating in
positive z direction. In our model, this corresponds to th
normal heartbeat. On the other hand, whenFp,F,F2, the
development of the instability is cut off by nonlinear effec
when the deviation from the static solution is too small
generate a full-fledged pulse. In this case, the entire attra
lies in the proximity of the static solution. AsF approaches
F2, the activity is extinguishedgradually: the closer isF to
F2, the smaller is the deviation from the static solution. Th
gradual disappearance of activity is reminiscent of a seco
order phase transition.

IV. THE CGL DESCRIPTION

Near the upper critical field, which from now on we wi
call the critical point, the fieldse(r ,t)5E(r ,t)2E0(z) and
g(r ,t)5G(r ,t)2G0(z) are small (E0 and G0 denote the
static solution!. Expanding the system~10!–~11! in e andg
so as to retain the leading nonlinearities, we obtain
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e
]e

]t
5¹2e1 f 8~E0!e1

1

2
f 9~E0!e21

1

6
f-~E0!e32g,

~25!

]g

]t
5e2bg. ~26!

As it turns out, the effect of thee2 term is relatively sup-
pressed and is of the same order as the effect of thee3 term.
So, we kept both types of terms in Eq.~25!.

Substituting the expansions~18!–~19! into ~25!–~26!, we
obtain

e
]un

]t
5~¹2

22ln!un2vn2anmm8umum8

2bnmm8m9umum8um9 , ~27!

]vn

]t
5un2bvn ; ~28!

repeated indices are summed over. Here¹2 is the 2D gradi-
ent: ¹25(]x ,]y), ln is the eigenvalue of the Schro¨dinger
problem~16!–~17!, anda andb are defined as

anmm8[2
1

2E0

Lz
dz f9~E0!cncmcm8 , ~29!

bnmm8m9[2
1

6E0

Lz
dz f-~E0!cncmcm8cm9 . ~30!

We stay closely enough to the critical point, so that
that side of it where the static solution is unstable there w
be only oneln satisfying the instability condition~23!. That
will be l0. In what follows we only consider cases whene
,1/b2. Then, the instability condition takes the form

g0,0, ~31!

whereg05b1l0 /e is the friction coefficient~22! for n50.
The closer the system is to the critical point, the smalle
ug0u. We make it small enough, so that the frequency squa
~21! with n50 ~and hence with alln.0 as well! is positive
and much larger thang0

2:

v0
251/e2b21bg0@g0

2 . ~32!

The large positivev0 sets the time scale of rapid oscillation
of un andvn .

We now want to show that when the system is sufficien
close to the critical point its dynamics on time scales of or
of and larger thanug0u21 is described by a 2D comple
Ginzburg-Landau~CGL! model. The fieldC(r2 ,t) of this
CGL model is defined via the expansion

v0~r2 ,t !5S C

b2 iv0
e2 iv0t1

A0C2

b22iv0
e22iv0t1c.c.D

1
C0

b
C†C1 . . . , ~33!
ll

s
d

y
r

where the omitted terms are higher harmonics, proportio
to the third and higher powers of exp(6iv0t); c.c. means
complex conjugate. The coefficientsA0 andC0 are in prin-
ciple series inC†C, but near the critical pointC is small,
and to the leading orderA0 andC0 can be regarded as con
stants, which will be determined later. The definition~33!
separates away the rapid oscillations with frequencyv0 and
its multiples and, in this sense, is analogous to a transitio
the nonrelativistic limit in field theory.

The CGL description is obtained by substituting~33! into
Eqs.~27!–~28!, expanding to the third order inC, and finally
retaining only terms that contain exp(6iv0t) in powers 0, 1,
and 2. One can verify that terms omitted in~33! will not
contribute to the resulting equation. For instance, terms p
portional to exp(63iv0t) are of orderC3; to convert them
into terms of lower order in exp(6iv0t) one will need to
multiply them by at least one power ofC or C†, which will
make them of the fourth order inC.

The CGL description allows us to consider disturbanc
of the uniform activity that satisfy the conditions

Ċ5O~C3!, ¹2
2C5O~C3!. ~34!

These are less restrictive than the smoothness condition~3!,
which now takes the form

u¹2Cu/uCu!2p/L. ~35!

In particular, unlike~34!, the condition~35! explicitly pro-
hibits topological defects, which are centered at zeros ofuCu.
Under the more restrictive condition~35!, the CGL dynamics
reduces, at sufficiently large times, to dynamics of the ph
of C alone.

To the third order inC, u0 is obtained from~28! and~33!
as

u0~r2 ,t !5C0C†C1S Ce2 iv0t1A0C2e22iv0t

1
Ċ

b2 iv0
e2 iv0t1c.c.D 1 . . . , ~36!

where dots again denote higher harmonics. As will
checked a posteriori,vn andun with n.0 are of orderC2.

In this approximation, Eqs.~27!–~28! with n50 become

e
]u0

]t
5~¹2

22l0!u02v02a000u0
222a00nu0un2b0000u0

3 ,

~37!

]v0

]t
5u02bv0 , ~38!

wheren.0, while for n5n.0 they become

e
]un

]t
52lnun2vn2an00u0

2 , ~39!

]vn

]t
5un2bvn . ~40!
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We see that in this approximation the modes withn5n.0
are damped linear oscillators driven by the external fo
proportional tou0

2. For the purpose of calculatingun , it is
sufficient to takeu0

2 computed to the second order inC:

u0
252C†C1~C2e22iv0t1c.c.!1O~C3!. ~41!

Then, the solution forun at large times is

un5AnC2e22iv0t1An* ~C†!2e2iv0t1CnC†C1O~C3!,
~42!

where

An52an00S ln22i ev01
1

b22iv0
D 21

, ~43!

Cn522an00~ln11/b!21. ~44!

Substituting this expression forun into Eq. ~37! for u0 we
see that the only effect of the modes withn.0 is a local~in
space and time! renormalization of the dynamics of then
50 mode.

To complete our derivation of the CGL description, w
now turn to Eq.~37! and compose separate equations
different powers of exp(2iv0t). The equations for the zerot
and second powers give expressions forC0 andA0 that are
of the same form as~43! and ~44! but with n everywhere
replaced by 0. The equation for the first power then gives
CGL equation

Ċ5D¹2
2C2

1

2
g0C2sC2C†, ~45!

where the complex diffusion coefficient is

D5
1

2e S 11
ib

v0
D , ~46!

and the complex coupling constant is

s5DH 22(
n50

`

a00n
2 F 2b

evn
2

1S ln22i ev01
1

b22iv0
D 21G

13b0000J . ~47!

Recall that the condition of instability of the static solution
g0,0, and near the critical pointug0u is small.

Spatially uniform activity near the critical point~for g0
,0) is described by the following solution of~45!:

C0~ t !5r0exp~2 isIr0
2t !, ~48!

wherer05(ug0u/2sR)1/2; sR and sI are the real and imagi
nary parts ofs. Of course, this solution exists only whe
sR.0. For a smooth perturbation of this uniform activi
~which, in particular, contains no topological defects!, we
can define the modulusr(r2 ,t) and the phaseu(r2 ,t) via

C~r2 ,t !5r~r2 ,t !exp„2 isIr0
2t1u~r2 ,t !…. ~49!
e

r

e

Substituting this into Eq.~33! shows thatu measures the
phase shifts in periodic activity among local regions, so i
precisely the variable that we defined in Sec. II. As t
modulus r relaxes close tor'r0 everywhere in the 2D
space, Eq.~45! reduces to an equation for the phaseu alone.
That equation is of the form~1!, with a5ReD, and c
52Im D.

V. CONSTRUCTION OF LATTICE MODELS

As we move away from the critical point and towards t
form of activity that is more representative of the norm
heartbeat, the CGL description ceases to be valid. Never
less, we expect that Eq.~1! will still apply for sufficiently
smooth perturbations. That is becauseu is the only variable
that can change arbitrarily slowly~for arbitrarily small gra-
dients!, and the two terms on the right-hand side of~1! are
the only two terms of the lowest~second! order in gradients
that are consistent with the symmetries of our model and
assumption thatu does not depend onz. Moreover, we now
have a reason to believe that both coefficientsa andc will be
nonzero: we have seen that they were both nonzero nea
critical point, and it is hard to imagine how either of the
would vanish identically when we move away. So, we co
sider Eq.~1! to be reasonably well justified.

The next step is to build upon~1! to construct models tha
would apply to not-so-smooth perturbations of the norm
rhythm, in particular, to those containing topological defec
As we consider perturbations of progressively smaller spa
scales, there are two effects that lead to deviations from~1!.
On the one hand, the granular~lattice! structure of the me-
dium becomes important; on the other hand, the local fo
of activity deviates from its unperturbed form, so that oth
variables besidesu come into play. We have found that th
resulting dynamics depends crucially on which of these t
effects becomes important first, i.e. at larger spatial scales
what follows, we contrast the corresponding two types of
dynamics. Finding out which one is realized in a spec
medium will require a detailed electrophysiological mod
The required model will have to include the details of t
granular structure, so it cannot be a simple continuum mo
of the type we used to justify Eq.~1!.

First, consider the case when the local activity is ve
rigid in maintaining its form. That means that each grain—
lattice site—still carries on essentially the undisturbed ac
ity, so the fieldu remains the only requisite variable. In th
case, the dynamics is described by a model of classical
tice XY spins. For definiteness, we consider here a mode
a square lattice, with interactions restricted to the nea
neighbors.~Similar results were obtained for a model th
includes interactions of next-to-nearest neighbors.! We take
the model equation in the form

] tu i5h22 (
j PNN( i )

@a sin~u j2u i !1c„12cos~u j2u i !…#.

~50!

The indexi labels the sites of a 2d square lattice, NN deno
nearest neighbors, andh is the lattice spacing. Eq.~50! is an
appropriate for our case discretization of Eq.~1! because it
takes into account the periodicity ofu, i.e. it is invariant
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under a shiftu i→u i12p for any individual i. This period-
icity is important for non-smooth perturbations, as it und
lies the existence of topological defects. Matching to
long-wave limit ~1! identifiesa and c in ~50! with those in
~1!.

Near the critical point,c/a52b/v0, which is propor-
tional to the smallAe. Away from the critical point, how-
ever, there is no reason to expectuc/au to be small, and we
need to explore the dynamics of the model for diverse val
of this ratio. We assume thata.0 and seta51 by a rescal-
ing of time.

When c50, Eq. ~50! becomes the usual diffusiveXY
model. This model has stable topological defects—vorti
and antivortices. A nonzeroc gives these defects a rotatio
~clockwise or counterclockwise, depending on the sign ofc),
so vortices and antivortices become spirals. By numeric
integrating~50!, we have found that for small values ofucu
these spirals are stable—or at least no instability could
detected during finite times of our computer runs.

As ucu is increased, the spirals become more tigh
wound, and at a sufficiently largeucu they become unstable
Formation of a tightly wound but still stable spiral is illus
trated by Figs. 1 and 2. Fig. 1 shows an initial state, conta
ing a single vortex, and Fig. 2 shows the spiral that devel
from that initial state fora51 andc520.5. The values ofu
at a given time are represented as directions of lattice sp
as measured clockwise from 12 noon@11#. These results
were obtained via Euler’s explicit time-stepping scheme o
33333 lattice with side lengthL510 and discretized Neu
mann boundary conditions. For picture clarity, only a
322 square is shown.

Evolution of an unstable defect is illustrated by Fig.
This picture was obtained fora51 andc522 on the same
lattice and with the same initial condition as Fig. 2. T
center of the defect now serves as a nuclei of a new pha
featureless turbulent state. A bubble of the new phase o
nates at the center of the defect and rapidly grows, eating

FIG. 1. Field distribution in the initial state (t50). The fieldu i

is represented by directions of lattice ‘‘spins’’ as described in
text. This initial state contains a single vortex.
-
e

s

s

ly

e

-
s

s,

a

.

, a
i-

up

the ‘‘normal’’ phase, until the new phase occupies the en
volume. As far as we can tell, the resulting turbulent state
persistent. Fig. 3 shows the bubble during its growth. T
growth is indeed so rapid that the initial vortex does not ha
time to fully develop into a spiral, although some fragmen
of spiral structure can be seen near the wall of the bubble
patch of the turbulent state is seen inside the bubble, a
from the wall. When the turbulent state occupies the en
volume, it remains disordered: directions of the spins
uncorrelated beyond a few lattice spacings. In addition, sp
in the turbulent state rapidly change their directions w
time.

Next, we consider a case when the local activity isflex-
ible, i.e. it readily changes its form in response to a sho

e
FIG. 2. Field distribution att520 obtained from the initial state

via numerical evolution according to Eq.~50! with a51 andc5
20.5. The initial vortex has turned into a spiral.

FIG. 3. Same as in Fig. 2 but at timet50.3 and fora51 and
c522. In this case, the initial vortex has nucleated an expand
bubble of a turbulent state.
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scale perturbation. For instance, we can supply the lat
spins with a variable length by makingu the phase of a
complex fieldF5uFuexp(iu). This introduces an additiona
degree of freedom associated withuFu. As an illustration,
considerF that obeys a complex Ginzburg-Landau~CGL!
equation:

]F

]t
5D¹2F1rF~12uFu2!, ~51!

whereD5a2 ic; for simplicity we take the couplingr to be
real: r .0. We can now discretize Eq.~51! on a 2D square
lattice of spacingh and vary the parameterr in relation to
h22. At large r, the modulusuFu freezes out atuFu'1, and
we obtain a lattice model ofu alone, in the spirit~although
not necessarily of the exact form! of Eq. ~50!. At small r, the
natural size of a defect’s core will be set by (uDu/r )1/2, rather
than by the lattice spacing, so we expect that the discret
tion will be irrelevant, and the dynamics will approach th
of the continuum 2D CGL model. This latter model has s
ral solutions that are at least core-stable in a certain rang
its parameters@12#. Numerically integrating discretized Eq
~51!, we have found that by varyingr, for a fixedc/a, one
can interpolate between the unstable spirals of a lat
model with fixed-length spins and the stable spirals of
continuum CGL model.

VI. CONCLUSION

In this paper we tried to implement consistently the id
that a disturbance in the normal heartbeat can be viewed
collection of ‘‘clocks,’’ each of which measures the loc
,

rt

r,
e

a-
t
-
of

e
e

a
s a

phase of the activity. In conjunction with the view that th
heart has a granular~or lattice! structure, this idea leads to
description of the heart via lattice models of classical spi
Our main results are as follows.

~i! Assuming that sufficiently smooth~almost uniform
across the medium! disturbances of the normal rhythm rela
back to it, one can write down a universal description of t
relaxation process. Universality means that the form of
equation is independent of details of microscopics. Fo
simplified model of the heartbeat, and disturbances depe
ing only on the transverse~with respect to the direction o
pulse propagation! coordinates, the universal description
Eq. ~1!. Although we have not derived this equation in th
general case, we have justified it by presenting a deriva
near a critical~bifurcation! point.

~ii ! For not-so-smooth disturbances, including topologi
defects, dynamics begins to depend on the assumed la
structure and the details of electrophysiology. In particu
we have found that it depends strongly on how rigid the lo
activity is in maintaining its form. When the activity is ver
rigid ~fixed length spins!, the system, for a range of the pa
rameter space, is prone to a defect-induced instability, wh
leads to a disordered, turbulent state.

We expect that the local rigidity of the medium~in the
above sense! will depend on its longitudinal size~the thick-
ness of the ventricles! and on the electrophysiological pa
rameters, such as Na and K conductances. Since, acco
to our results, the local rigidity plays such an important ro
in the transition to turbulence~fibrillation!, its dependence on
the parameters may serve to identify useful therapeutic
gets.
m
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