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Dynamics of lattice spins as a model of arrhythmia
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We consider evolution of initial disturbances in spatially extended systems with autonomous rhythmic
activity, such as the heart. We consider the case when the activity is stable with respect to very smooth
(changing little across the medigmisturbances and construct lattice models for description of not-so-smooth
disturbances, in particular, topological defects; these models are modifications of the dikiYsimedel. We
find that when the activity on each lattice site is very rigid in maintaining its form, the topological defects—
vortices or spirals—nucleate a transition to a disordered, turbulent g&it@63-651X99)03312-7

PACS numbes): 87.19.Nn, 64.60.Cn

I. INTRODUCTION We introduce an interaction of an excitable regitike
the ventricleg with a pacemaking region using the following
Physical mechanisms underlying many cardiac arrhythsimplified (not anatomical model. We consider a three-
mias, in particular the transition from ventricular tachycardiadimensional3D) slab of simulated medium whose extent in
to ventricular fibrillation(VF), are not fully understood. The thez direction is limited by the planez=0 andz=L,. The
ventricular tissue is known, both experimentally and theo-properties of the medium change in thalirection: the re-
retically, to support long-living spiral excitations, and it is gion nearz=0 is spontaneously oscillatory and represents
thought that a breakup of such a spiral could give rise to ahe pacemaking region; the region at larges merely ex-
turbulent, chaotic activity commonly associated with VF.citable and represents the ventricular tissue. Zliérection
(Spirals are reviewed in booK4].) A considerable effort is  will be also called longitudinal, and the other two directions,
now being directed towards understanding of these defeck andy, will be called transverse. The medium supports a
mediated transitions to turbulence within mathematical modspontaneous rhythmic activity, in which an infinite train of
els of ventricular tissue. The currently popular appro@eh
viewed in Ref[2]) considers a spiral in a patcbr slah of
ventricular tissue; the patch is taken in isolation from any

pacemakmg source. Ong then follows numerically the tlmgnner surface of the ventricles out.
evolution of that initial spiral.

In the real beating heart, however, the ventricles are not The goal of our study was to see what happens if at some

isolated from other regions, and the heart, viewed as awholér,]St‘r’Tnt the spo.ntaneous -rhythmic activity is disturped in a
supports &more or less periodic autonomous activity—the _spat|ally nonuniform f{:\shlon, gnd_ then the syst(_am is left to
heartbeat itself. In this case, any defect should be properlifS€!f- We approach this question in two steps. First, we con-
viewed as a disturbance of the normal heartbeat, rather thander the case when the initial disturbance is very smooth, i.e.
a structure in isolated tissue. In this paper we present son@most uniform across the medium; in particular, it captures
general results on the evolution of initial disturbances in auno topological defects. In this case, we expect theally the
tonomously active media and discuss their possible appliceactivity rapidly relaxes close to its undisturbed form. The
tions to cardiac arrhythmias. In particular, we identify astate can then be described using a single figkly,z;t),
simple mechanism of defect-induced transition to turbulencévhich measures the space- and time-dependent detaad-
in discrete(lattice) systems. We also find that the more rigid vance in activity among the local regions. This field is a
is the system in maintaining locally the undisturbed form ofphase variable: it is defined modulo the periddof the
activity, the more easily the transition to turbulence occurssteady rhythm. For these smooth perturbations, we expect
This observation can potentially identify a useful therapeutidhat the dynamics of at large times will be universal: it will
target. be described by an equation whose fofafthough not the
The assumed lattice structure need (ibbugh it may be  precise values of the coefficientdoes not depend on the
related to the mechanical structure of the medium. The sizdetails of electrophysiology or on the microstructure of the
of the lattice spacing in our models simply represents thenedium. In particular, this large-time dynamics does not
smallest spatial scale on which the rhythmic activity can bé‘see” the granular structure of the medium. The form of the
desynchronized: a region smaller than that scale will necessquation depends on the symmetries of the medium at large
sarily fire as one. Discrete models of fibrillation have a longscales and can be obtained by keeping terms of the lowest
history, cf. the 1964 model of Moet al. [3]. (Unlike these order in space and time derivatives consistent with the sym-
authors, though, we do not introduce any frozen inhomogemetries. For simplicity, we will assume that at large scales
neity in the parameters of the medium, apart from the latticehe properties of the medium are invariant under translations
structure itself. In addition, the importance of a discrete and rotations in the-y plane and that does not depend on
(granulay structure of the medium has been emphasized iz, i.e. the disturbance is effectively two-dimensioraD).
theoretical studies afifibrillation [4]. (Recall thatz is the direction of propagation of the normal

pulses propagates from small to largeThis steady activity
is independent ofk andy and is supposed to model the
heart’'s normal rhythm, in which pulses propagate from the
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rhythm) In this case, the equation describing the large-timecomplex Ginzburg-Landa(CGL) model of a complex order

dynamics has the form parameter whose phase is our time-delay fiéldFor a
smooth, almost uniform, perturbation, the CGL description
d6=av30+c(V,0)?, (1) reduces to an equation far alone, and that has the precise
. . form (1), with definite values ofr andc. In particular, we
where the phasé(x,y;t) is related tor via find thata>0 andc#0. As we move away from the critical

point and towards the form of activity representative of the
normal heartbeat, the CGL description ceases to be valid.
But as it is difficult to imagine how would now suddenly
become identically zero, we assume that the large-time dy-
namics of @ is still described by(1) with a nonzeroc. We
also assume that> 0, so that the uniform state is stable. The
|V, 0|<27/L, (3) electrophysiological mpd_el that we use is reviewed in Sec.
Ill, and the CGL description is derived in Sec. IV.

whereL=maxL, L} is the transverse size of the medium. ~ The second step of our program is promoting the above
Under this condition, the second term on the right-hand sidéescription of smooth perturbations to a description includ-
of (1) is much smaller than the first. We keep it nonethelessing not-so-smooth perturbations, in particular, topological
because it is the leading term that breaks ti#e defects. The latter description will not be universal. The lack
— — 6 symmetry. As we will see, terms breaking this sym- of Universality mean@y deflnltlon) that the description, and
metry play an important role in evolution of non-smooth the type of the resulting dynamics, depend on the microstruc-
disturbances, such as topological defects. So, it is essential gre of the medium. Because no activity can be fine-grained
establish that the coefficientis indeed nonzero. For smooth indefinitely, it is natural to assume a granular, or lattice,
disturbanceS, though, the second term is unimportant' a_n.‘a:rUCtUre. In Sec. V, we construct lattice models and Study
Eq. (1) shows that whemm>0 a smooth initial disturbance their dynamics. In Sec. VI we summarize our results.
relaxes back to the uniform steady rhythm={(const). The
relaxation process is ordinary diffusion. Il. DESCRIPTION OF SMOOTH DISTURBANCES

The initial disturbanced(x,y;t=0) can be viewed as a
result of a spatially dependent resetting of the phase of the
periodic activity by some external influence. Phase resettin

by external stimuli is well-known for various other periodic . o o . o
processes in excitable media, such as a reentrant wave ins'<l:\OW in the I|m!t of arbitrarily small grgd|ents, it should not
' be confused with “slow” recovery variables of electrophysi-

ring [5—7] or spiral and target waves in a 2D pa{@j. We L . .
also note that our assumption of the 2D nature of the distur9|°gy' Our definition ofr works for any medium supporting

bance is restrictive but not entirely unphysical. First, for a@n autonomous periodic activity that is stable with respect to

smooth disturbance, thedependence will diffuse away ear- smooth, almost uniform, perturbations. For definiteness, we
lier than the transvérse dependence whenéverL, so at consider here an electrophysiological equation of the form
large times the disturbance will become two-dimensional.
Second, vortices in two dimensions may represent, at least

qualitatively, those vortex filaments in three dimenSionSOverhead dots denote time derivativEsis the 3D gradient,

whose axes are more or Ies; orthogonal toxtiyeplane. On and e andb are parameters. The change in properties of the
the other hand, filaments lying parallel to tkey plane are  oqiym in thez direction is described by the functiof,

missed by the assumption that the disturbance is tWwogicp, explicitly depends om. Eq. (4) obtains, for instance,

dimensional. These may be important, and we expect thene 5 medium described by the two-variable FitzHugh-
can be handled by a generalization of the present theory. Nagumo(FHN) model[9] is placed in an external static elec-

It is important to provide a derivation @1) from an elec- - "fielq (we will show that below: In that caseg is the
trophysiological model. In particular, that would supply cer-yeyiation of the recovery variable of the FHN model from
tain values for the yet unknown coefficiergsandc. In Sec. the static solution.

Il we show how@ (or 7) can be defined within such a model. We consider cases when E@) (or, more precisely, a

The smaller are gradients @ the slower it evolves. One g itable houndary problem based orhias a periodic in time
might think that, given an electrophysiological model, it ¢, tion of the form

should be easy to separate away the slow dynamics and ob-

tain, quite generally, a closed equation trThis task, how- g(r,t)=¢(z,t). (5)

ever, turns out to be far from straightforward, and as of this

writing we have not been able to obtain a general derivatiorror example, this solution may describe a train of pulses

of (1); in Sec. Il we illustrate the nature of the difficulty. propagating in thez direction. The periodicity means that
To establish that the coefficiewtis indeed nonzero, we ¢(z,t+T)= ¢(z,t) for some periodl. Notice that, because

then have resorted to the following argument. The simpleof the translational invariance @#) in time, ¢(z,t—17) is

electrophysiological model that we consider can be drivenalso a solution of(4), for any realr (albeit with different

by a choice of the parameters, to a criti@@furcation point, initial conditiong. We now consider a smootfin space

at which the autonomous rhythmic activity is extinguished.perturbation of the periodic activity described k§) and

Near the critical point, the system can be described by @assume that a sufficiently smooth perturbation relaxes back

o(x,y;t)=2mr(X,y;t)/T, 2

and a and c are coefficients;V, is the 2D gradient:V,

= (dx.,dy).
We define a smooth disturbance by the condition

In this section we want to show how the slow variable
r equivalentlyr, can be defined within the context of an
lectrophysiological model. This variable evolves arbitrarily

€g—V29—bV2g—F(g,0;2)=0. (4



7264 S. KHLEBNIKOV PRE 60

to the periodic state. After the relaxation has been under way lll. A MODEL OF THE HEARTBEAT
for a while, we expect that deviations gffrom ¢ are al-

; . In this section, we describe in some detail the pacemaking
ready small—except perhaps in the softest mode, associated . ; . T
. . . . mechanism with which we model the heartbeat. This simple
with the time translation. We thus seek a solution to &J.

of the form model, based on the two-variable FitzHugh-Nagu(bIN)

kinetics, will be sufficient for our argument justifyingl)
(r,t)=o(z,t—7(r,t))+ x(r,t), (6)  With nonzeroa andc. _ _ _
g ¢ ( X Consider a slab of medium described by a FitzHugh-

wherer(r,t) is a slowly changingon the scale of the period Nagumo model,

T) function of time: 7<7/T. In the limit 7—0, we should E

return to the solutior(5) merely §hifted in time, so in this 6a—=V2E+f(E)—G, (10)

limit x should vanish. Thus, whenis small, y is also small, at

although not necessarily slowly changing. Because of the

periodicity of ¢ in time, 7(r,t) is a phase variable: at each JIG _e_

X e ! X . E-DbG, (13)
spatial point, it is defined modulo the periddThe condition at

that the perturbation be smooth reduces this ambiguity to a . ) ) o

common shift byT in the entire space. placed in a static uniform external electric field, such as the

Note that separation of a perturbation intand y is not  field of a parallel capacitor. HerE is the transmembrane
completely defined by6): a time-dependent variation in ~ Voltage,G is the recovery variables>0 andb>0 are pa-
can be absorbed by a variation yn This ambiguity can be rameters, anc}V is the 3D gradlent._Thg direction of the
fixed by an additional condition—for instance, by requiring external field is our longitudinal, ar, direction, and the slab
that y is orthogonal to with respect to a certain inner €Xtends in that direction from=0 toz=L,. The boundary
product. Eq.(6) together with the additional condition will conditions corresponding to this arrangement are
then provide a complete definition of the slow variable

Now, let us illustrate the nature of the difficulty that arises
when one tries to derive a closed equation#drom Eq.(4).
We substitutg6) into (4) and expand the right-hand side to
thellea.ding order in small quantities—the functb@@nd the The boundary problenil0—(12) has a static solution,
derivatives ofr. The depeAndence 0)(|W|IIAbe contained in Eo(z), Go(z). Deviations from the static solution are
an expression of the forrvl (¢) x, whereM is a linear op-  e(r,t) =E(r,t) — Eo(z) andg(r,t) =G(r,t) — Go(z). Exclud-
erator, which acts oy and depends og(z,t—7(r,t)). Be-  ing the variablee with the help of(11), we obtain an equa-
cause of the translational invariance (@ in time, the op-  tion of the form(4) with

eratorM () almost annihilategh(z,t— 7(r,t)):

JEl9z(0)=0Eldz(L,)= — F, (12

where F is a positive constant—the magnitude of the exter-
nal field.

F(9,9;2)=f(Eo+bg+9)—f(Ep)—g—ebg. (13

M(¢)$=~0; (7)
The explicit dependence df on z appears through the
the approximate equality means an equality up to terms ofiependence .
order of the small quantity,r. If the operatorM () were For a range ofF the static solution tq10)—(12) is un-

Hermitean with respect to an inner product of the form stable, for various choices 6{E), with respect to arbitrarily
. . small fluztuations odE and((js, and the[in?tabrillity gi;fet? rise to
_ |7 an unending time-dependent activity0]. This will be our
(xaox2)= Jo dzJ’O dtwzhx(z0x(z0), @ pacemaking mechanism. The corresponding linear stability
analysis introduces a number of useful definitions, so we
for some fixed weightv(z,t), then taking the inner product briefly go over it here.
of (4) with ¢ would, to the leading order, project awgyand Expanding Eqs(10)—(11) to the first order ire andg, we
produce a closed equation for In the case of eq4), how-  obtain

ever, the explicit form of the operatdd is
JF

IF
€d?—V29,—bV?— —— —2¢ )x, 9)

1 _, & 1
(ae/at)z - V2+E+f[EO(2)] - (e)
b ap

agl ot g/’
(14)

M(p)x=

1 —b

whereF is F(¢, ¢;Z). This operator is clearly not Hermitean

with respect td8) with w=1, and indeed we have not found This equation should be supplemented by the boundary con-
any weight that would render it Hermitian. Thus, we wereditions
unable to directly separate the slow dynamicsdfom the

fast dynamics ofy. While it seems intuitively clear that the

slow dynamics will be described by an equation of the form

(1), to establish that the coefficiendsandc are indeed both
nonzero, we had to resort to an indirect method, which weConsider eigenfunctiong,(z), n=0, of thez-dependent op-
describe below. erator in(14),

e~ oe B
5 (0=7(L)=0. (15
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52 model. We have done numerical simulations wlith= 3.2.
( - —z—f’[Eo(z)]) Un(2) =N on(2), (16 For lengths, Ref[6] recommends scaling by a factor of 0.5
Jz cm. A somewhat smaller scaling factor of 0.2 cm is obtained
with the boundary conditions if we equate the characteristitDebye”) lengthé=0.57, at
which a weak static field gets screened inside the medium, to
Iy, W a realistic value of 1 mm. With either scaling, thoudh,
o7 (0= (L)=0. (170 =3.2 corresponds to a physical length of order 1 cm.
Away from the boundaries, the static solution approaches
We assume that the eigenfunctiogrs are real and form a the usual excitable fixed poir, =G, =0, which for the

complete orthonormal system @n[O,L,]. above values of the parameters is stable with respect to small
The fieldse and g can be expanded in the complete or- perturbations. An unstable mod# any) is thus localized
thonormal systenfy,}: near one of the boundaries, specifically, for positienear
. z=0. So, when the instability is actually present, the pace-
making region is a region near= 0, in agreement with our
e(”):ngo Un(r2,t)n(2), (18 earliergdef?nitions. ’ ’
To find out if the instability occurs for a given value &t
* one can numerically solve the boundary probl&rf)—(17)
g(r,t)= 2 Vn(ra,t) ¥n(2); (19 and check the conditio(3). Alternatively, one can numeri-
n=o cally integrate the time-dependent probléf®)—(12) with
herer, is the two-dimensional coordinate;=(x,y). Eq. initial conditions corresponding to small fluctuations near the
(14) then reduces to the following second-order in time lin-Static solution. This second approach also allows one to find
ear equation the form of the time-dependent attractor emerging as the in-
stability is cutoff by nonlinear effects, so we have adopted it.
)\n—Vg For the purposes of this section, it is sufficient to consider

b+

. .1
Vot Vn+z(1+b[)‘n_vﬂ)vn:0' (20 jnitial fluctuations that are independent ®fand y. Using
numerical integrations ofl0)—(12) with such initial condi-
Eq. (20) describes a collection of independent oscillators tions and with the above values of the parameters, we have
one for each value of the integae=0 and of the 2D wave found that the static solution is stable as long &s F;
numberk. These oscillators have frequencies squared equal(.4. The valueF; is the lower critical value, at which the
to wj+bk?/e and friction coefficients equal to,+k?€,  static solution first becomes unstable/&ss increased. The
where instability persists as long ag;<F<F, but disappears
when F reaches the upper critical valig~1.

wﬁ:(l-l_ b€, @D The form of the timggjependent attLr?ctor, which develops

from small initial fluctuations near the static solution, is

qualitatively different for values ofF that are close to the

Assuming that the boundary conditions in tkey plane al- ~ upper critical field as compared to those elsewhere in the
low for the k=0 mode, we conclude that the necessary andnstability window. These two different forms correspond to

vn=b+\,/e. (22)

sufficient condition for instability is that propagating versus nonpropagating actiyg]. In the range
F1<F<F,, where F, is somewhat smaller thas,, the
Ap<max —eb, —1/b} (23)  attractor is an unending train of pulses propagating in the

. . . positive z direction. In our model, this corresponds to the
for at least one of the eigenvalukg. This condition corre- normal heartbeat. On the other hand, Wi F< 7, the
. . . . ’ 21
Ep?r?ds to there being a negatmx% or a negativey,, or development of the instability is cut off by nonlinear effects
oth. when the deviation from the static solution is too small to

in T:heaﬁa;asr?ﬁtgfes\%lst;gg ;ﬁgloi:iggnrzsg\?leis \C/gﬁ;%%enz'generate a full-fledged pulse. In this case, the entire attractor
g 9 Y lies in the proximity of the static solution. A% approaches

. - . < 2 g _ - ) ' - - -
and is typically small. Wher<1/b%, the condition(23) be F», the activity is extinguishedradually. the closer iSF to

comes ; 2 : : )
F,, the smaller is the deviation from the static solution. This
Ap<— €D, (24) gradual disappearance of activity is reminiscent of a second-
order phase transition.
or equivalentlyy,,<0, wherey, is the friction (22).
The question that we now address is whether the condi-

tion (24) is ever satisfied for physiologically relevant values IV. THE CGL DESCRIPTION
of the parameters. We chooge=0.06, b=0.7, andf(E)
=6.7FE(E—0.25)(1-E), as recommended in Rdf6] for Near the upper critical field, which from now on we will

ventricular tissue with “normal” Na and K conductances. call the critical point, the fieldse(r,t)=E(r,t) —Eq(z) and

The only other parametébesidesF) that we need to choose g(r,t)=G(r,t)—Ggy(z) are small E, and G, denote the
is L,, the thickness of the slab in tiedirection. This rep-  static solution. Expanding the systerti0)—(11) in e andg

resents the thickness of the ventricles in our simplifiedso as to retain the leading nonlinearities, we obtain
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Je 2 , 1 " 2 1 m 3
GE:V e+f'(Ege+ Ef (Ep)e +€f (Eo)e’—g,
(25)

79
E =e— bg

(26)
As it turns out, the effect of the? term is relatively sup-
pressed and is of the same order as the effect oétherm.
So, we kept both types of terms in E@5).

Substituting the expansiori$8)—(19) into (25)—(26), we
obtain

Un_ 2
€ ot =(V5=Ap)Un=Vn— @pnmm UnUny

= Bammr mUmUms Unyr s (27
vy
qun—bvn; (28)

repeated indices are summed over. Hégds the 2D gradi-
ent: V,=(dy,dy), \, is the eigenvalue of the Schdimger
problem(16)—(17), anda and 8 are defined as

1L,
Apmmy = — Efo dz f”(EO) Untbmtm s (29

1L,
IBnmm’m”E - gfo dz fm(EO) 'r//n’r/’m'r/fm' ’r/’m" . (30)
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where the omitted terms are higher harmonics, proportional
to the third and higher powers of expiwgt); c.c. means
complex conjugate. The coefficierdg and C, are in prin-
ciple series in¥ "W, but near the critical poin® is small,

and to the leading ordek, andC, can be regarded as con-
stants, which will be determined later. The definiti88)
separates away the rapid oscillations with frequengyand

its multiples and, in this sense, is analogous to a transition to
the nonrelativistic limit in field theory.

The CGL description is obtained by substitutif8p) into
Eqgs.(27)—(28), expanding to the third order i, and finally
retaining only terms that contain expiwgt) in powers 0, 1,
and 2. One can verify that terms omitted (83) will not
contribute to the resulting equation. For instance, terms pro-
portional to expf-3iwgt) are of order¥3; to convert them
into terms of lower order in exp{iwgt) one will need to
multiply them by at least one power & or ¥, which will
make them of the fourth order ir.

The CGL description allows us to consider disturbances
of the uniform activity that satisfy the conditions

T=0(¥3), Vi3U=0(¥3). (34)

These are less restrictive than the smoothness condBjon
which now takes the form

|V, 0|/| | <27/L. (35
In particular, unlike(34), the condition(35) explicitly pro-
hibits topological defects, which are centered at zerg¥of
Under the more restrictive conditi@B5), the CGL dynamics
reduces, at sufficiently large times, to dynamics of the phase

We stay closely enough to the critical point, so that on©f ¥ alone.

that side of it where the static solution is unstable there will

be only one\ , satisfying the instability conditiof23). That

will be Ay. In what follows we only consider cases when

<1/b?. Then, the instability condition takes the form
%<0, (3D

whereyg=b+\y/€ is the friction coefficien{22) for n=0.

The closer the system is to the critical point, the smaller is
| vol. We make it small enough, so that the frequency square

(21) with n=0 (and hence with alh>0 as wel) is positive
and much larger tham?:

wi=1le—b?+by,> 3. (32

The large positiven, sets the time scale of rapid oscillations

of u, andv,,.

We now want to show that when the system is sufficiently
close to the critical point its dynamics on time scales of order
of and larger thar|yo| ! is described by a 2D complex

Ginzburg-LandauCGL) model. The field¥(r,,t) of this
CGL model is defined via the expansion

AgW2
e 2Ziwot ¢ .
b_ 2| (1)0

aiwgt

q

VO(rZIt): b_|w0

(33

To the third order iV, ug is obtained from28) and(33)
as

Uo(ry, 1) =CoWTW+| We 'wot+ A P2 2iwot

+ g i@t 4 c.c.) + ..., (36)

b_iwo

Q/here dots again denote higher harmonics. As will be

checked a posteriori,, andu, with n>0 are of ordef¥2.
In this approximation, Eqg27)—(28) with n=0 become

‘9”0_ 2 2 3
GW—(Vz_)\o)uo_Vo_aoodf'o_zaooVUoUV_,BooodJOa
37
(9V0
—i ~UYo—bvo, (38
wherev>0, while forn=»>0 they become
au, )
€ ot :_)\VUV_VV_aVOOUO’ (39)
v,
—=u,—bv,. (40)
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We see that in this approximation the modes with v>0
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Substituting this into Eq(33) shows thatf measures the

are damped linear oscillators driven by the external forcephase shifts in periodic activity among local regions, so it is

proportional touS. For the purpose of calculating,, it is
sufficient to takeu computed to the second orderin:

us=2WT+(W2e 2wt cc)+O(P3).  (41)
Then, the solution fou, at large times is

u,=A,W2e Zoot4 A*(Ph)2g2ioot C Wiy +O(W3),

(42
where
-1
A,=— a0 )\V_2|6w0+m ) (43
C,=—2a,00\,+1b)" L. (44)

Substituting this expression far, into Eq. (37) for uy we
see that the only effect of the modes with-0 is a local(in
space and timerenormalization of the dynamics of the
=0 mode.

To complete our derivation of the CGL description, we
now turn to EQ.(37) and compose separate equations fo
different powers of exp{iwgt). The equations for the zeroth
and second powers give expressions@grand A, that are
of the same form a$43) and (44) but with » everywhere

I,

precisely the variable that we defined in Sec. Il. As the
modulus p relaxes close tp~p, everywhere in the 2D
space, Eq(45) reduces to an equation for the phakalone.
That equation is of the form(1), with a=ReD, and c
=—ImD.

V. CONSTRUCTION OF LATTICE MODELS

As we move away from the critical point and towards the
form of activity that is more representative of the normal
heartbeat, the CGL description ceases to be valid. Neverthe-
less, we expect that Eq1) will still apply for sufficiently
smooth perturbations. That is becausés the only variable
that can change arbitrarily slowkfor arbitrarily small gra-
dientg, and the two terms on the right-hand side(df are
the only two terms of the lowegsecondl order in gradients
that are consistent with the symmetries of our model and the
assumption that! does not depend on Moreover, we now
have a reason to believe that both coefficiengdc will be
nonzero: we have seen that they were both nonzero near the
critical point, and it is hard to imagine how either of them
would vanish identically when we move away. So, we con-
sider Eq.(1) to be reasonably well justified.

The next step is to build upail) to construct models that
would apply to not-so-smooth perturbations of the normal
rhythm, in particular, to those containing topological defects.

replaced by 0. The equation for the first power then gives the\g e consider perturbations of progressively smaller spatial

CGL equation
1 2 1 2qqpt
\I’zDVZ\P—EyO\I’—s\If v (45
where the complex diffusion coefficient is

1 ib
D—Z(l+—), (46)

0]

and the complex coupling constant is

2b -1

€wp

s=D{—2Z ado, An—2i €wg+
n=0

+ 330000] : (47

Recall that the condition of instability of the static solution is

70<0, and near the critical poirty,| is small.
Spatially uniform activity near the critical poirifor v,
<0) is described by the following solution ¢45):

Wo(t) = poexp( —is;pt), (48

where po= (| vo|/2sr) Y% sg ands, are the real and imagi-
nary parts ofs. Of course, this solution exists only when
sg>0. For a smooth perturbation of this uniform activity

(which, in particular, contains no topological defectae
can define the modulys(r,,t) and the phasé(r,,t) via

W(ry,t)=p(rz,t)exp(—is;pgt+ 6(rz,t)). (49

scales, there are two effects that lead to deviations ftbm

On the one hand, the granuldattice) structure of the me-
dium becomes important; on the other hand, the local form
of activity deviates from its unperturbed form, so that other
variables besideg come into play. We have found that the
resulting dynamics depends crucially on which of these two
effects becomes important first, i.e. at larger spatial scales. In
what follows, we contrast the corresponding two types of the
dynamics. Finding out which one is realized in a specific
medium will require a detailed electrophysiological model.
The required model will have to include the details of the
granular structure, so it cannot be a simple continuum model
of the type we used to justify Eq1).

First, consider the case when the local activity is very
rigid in maintaining its form. That means that each grain—or
lattice site—still carries on essentially the undisturbed activ-
ity, so the fieldd remains the only requisite variable. In this
case, the dynamics is described by a model of classical lat-
tice XY spins. For definiteness, we consider here a model on
a square lattice, with interactions restricted to the nearest
neighbors.(Similar results were obtained for a model that
includes interactions of next-to-nearest neighbovge take
the model equation in the form

&tei:h72 E

[asin(6;— 6;)+c(1—cog 6;—6)))].
i e NN(i)

(50

The indexi labels the sites of a 2d square lattice, NN denotes
nearest neighbors, aris the lattice spacing. EG50) is an
appropriate for our case discretization of Efj) because it
takes into account the periodicity df, i.e. it is invariant
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FIG. 1. Field distribution in the initial state€0). The field#6, FIG. 2. Field distribution at=20 obtained from the initial state
is represented by directions of lattice “spins” as described in thevia numerical evolution according to E¢p0) with a=1 andc=
text. This initial state contains a single vortex. —0.5. The initial vortex has turned into a spiral.

under a shiftd,— 6, + 2 for any individuali. This period- e “normal” phase, until the new phase occupies the entire
icity is important for non-smooth perturbations, as it under-Yolume. As far as we can tell, the resulting turbulent state is
lies the existence of topological defects. Matching to thepersste.nt.. Fig. 3 ShOW.S the bubt.)k.e.durlng its growth. This
long-wave limit (1) identifiesa and ¢ in (50) with those in growth is indeed so rapid that the initial vortex does not have
1), time to fully develop into a spiral, although some fragments
of spiral structure can be seen near the wall of the bubble. A
patch of the turbulent state is seen inside the bubble, away
from the wall. When the turbulent state occupies the entire
volume, it remains disordered: directions of the spins are
Tincorrelated beyond a few lattice spacings. In addition, spins
in the turbulent state rapidly change their directions with
time.
Next, we consider a case when the local activityléx-
Yole, i.e. it readily changes its form in response to a short-

Near the critical pointc/a= —Db/wg, which is propor-
tional to the smally'e. Away from the critical point, how-
ever, there is no reason to expéctal to be small, and we
need to explore the dynamics of the model for diverse value
of this ratio. We assume that>0 and sea=1 by a rescal-
ing of time.

When c=0, Eq. (500 becomes the usual diffusivkY
model. This model has stable topological defects—vortice
and antivortices. A nonzero gives these defects a rotation
(clockwise or counterclockwise, depending on the sigo)of

: : ; ; ; T A

SO vort|_ces and antivortices become spirals. By numerically f 5 f j 5 j 5 ? ’// j ? j?;//n‘\\\‘\\
integrating(50), we have found that for small values [af NN RN RN NV Y VYRR
these spirals are stable—or at least no instability could be /A B Y A B B B B R A AC NN
detected during finite times of our computer runs. A < VAV e

As |c| is increased, the spirals become more tightly |1 AN N e
wound, and at a sufficiently larde| they become unstable. AN/ AN\ [ e
Formation of a tightly wound but still stable spiral is illus- :;ifi}§§§§<>:;{;::::§:
Frated py Figs. 1 and 2. Fig. 1 shows an |n|t|.al state, contain- 77\ LN SN\ [ O\ e
ing a single vortex, and Fig. 2 shows the spiral that develops 7 | .\ /~ /~" | \» / \»/—
from that initial state fom=1 andc= —0.5. The values of SN S — 7N\ N
at a given time are represented as directions of lattice spins, /7 )\« N /N NN\ o
as measured clockwise from 12 nofhl]. These results / }”}/“‘\““/ \ N s
were obtained via Euler’s explicit time-stepping scheme on a j: ' : / :}‘((ij::é:/:::tt::
33% 33 lattice with side length. =10 and discretized Neu- L ANV A R N N NN
mann boundary conditions. For picture clarity, only a 22 / / }M/ N S S NN N N
X 22 square is shown. 9’ ; f }\‘\V\’/ Py /<‘<§§\\\t§§t‘\\

Evolution of an unstable defect is illustrated by Fig. 3. ST
This picture was obtained fa=1 andc=—2 on the same ; ; 91 ; I } } }?}Q;Eii:t;\\il\:\\:

lattice and with the same initial condition as Fig. 2. The
center of the defect now serves as a nuclei of a new phase, a FIG. 3. Same as in Fig. 2 but at time0.3 and fora=1 and
featureless turbulent state. A bubble of the new phase origie=—2. In this case, the initial vortex has nucleated an expanding
nates at the center of the defect and rapidly grows, eating upubble of a turbulent state.
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scale perturbation. For instance, we can supply the latticphase of the activity. In conjunction with the view that the
spins with a variable length by making the phase of a heart has a granuldor lattice) structure, this idea leads to a
complex fieldd =|®|exp(d). This introduces an additional description of the heart via lattice models of classical spins.
degree of freedom associated witl|. As an illustration, Our main results are as follows.

consider® that obeys a complex Ginzburg-LandeDGL) (i) Assuming that sufficiently smootkalmost uniform
equation: across the mediupdisturbances of the normal rhythm relax
back to it, one can write down a universal description of this
7000 . ; .
— =DV2D+rd(1—|®|?), (51)  relaxation process. Universality means that the form of the
at equation is independent of details of microscopics. For a

simplified model of the heartbeat, and disturbances depend-

real:r>0. We can now discretize E¢51) on a 2D square ing only on the. transverséwith respecF o the direc.tio_n Of.
lattice of spacingh and vary the parameterin relation to pulse propagationcoordinates, the universal description is
h=2. At larger, the modulug®| freezes out af®|~1, and Eqg. (1). Although we have not derived this equation in the
we obtain a lattice model of alone, in the spiritalthough ~ 9€neral case, we have justified it by presenting a derivation
not necessarily of the exact fojraf Eq. (50). At smallr, the ~ Near a criticalbifurcation point. o .
natural size of a defect’s core will be set H(/r)*?, rather (ii) For not-so-smooth disturbances, including topological
than by the lattice spacing, so we expect that the discretizai€fects, dynamics begins to depend on the assumed lattice
tion will be irrelevant, and the dynamics will approach thatStructure and the details of electrophysiology. In particular,
of the continuum 2D CGL model. This latter model has spi-We have found that it depends strongly on how rigid the local
ral solutions that are at least core-stable in a certain range @Ctivity is in maintaining its form. When the activity is very
its parameter§12]. Numerically integrating discretized Eq. "gid (fixed length spink the system, for a range of the pa-
(51), we have found that by varying for a fixedc/a, one  'ameter space, is prone to a defect-induced instability, which
can interpolate between the unstable spirals of a latticé@ds to a disordered, turbulent state.

model with fixed-length spins and the stable spirals of the We expect that the local rigidity of the mediufm the
continuum CGL model. above sengewill depend on its longitudinal siz&he thick-

ness of the ventriclesand on the electrophysiological pa-
rameters, such as Na and K conductances. Since, according
to our results, the local rigidity plays such an important role

In this paper we tried to implement consistently the ideain the transition to turbulendgdibrillation), its dependence on
that a disturbance in the normal heartbeat can be viewed astlie parameters may serve to identify useful therapeutic tar-
collection of “clocks,” each of which measures the local gets.

whereD =a—ic; for simplicity we take the coupling to be

VI. CONCLUSION
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